学Python,想必大家都是从爬虫开始的吧。毕竟网上类似的资源很丰富,开源项目也非常多。
Python学习网络爬虫主要分3个大的版块:抓取,分析,存储
当我们在浏览器中输入一个url后回车,后台会发生什么?
简单来说这段过程发生了以下四个步骤:
查找域名对应的IP地址。
向IP对应的服务器发送请求。
服务器响应请求,发回网页内容。
浏览器解析网页内容。
那么学习爬虫需要掌握哪些库呢
通用:
- urllib -网络库(stdlib)。
- requests -网络库。
- grab – 网络库(基于pycurl)。
- pycurl – 网络库(绑定libcurl)。
- urllib3 – Python HTTP库,安全连接池、支持文件post、可用性高。
- httplib2 – 网络库。
- RoboBrowser – 一个简单的、极具Python风格的Python库,无需独立的浏览器即可浏览网页。
- MechanicalSoup -一个与网站自动交互Python库。
- mechanize -有状态、可编程的Web浏览库。
- socket – 底层网络接口(stdlib)。
- Unirest for Python – Unirest是一套可用于多种语言的轻量级的HTTP库。
- hyper – Python的HTTP/2客户端。
- PySocks – SocksiPy更新并积极维护的版本,包括错误修复和一些其他的特征。作为socket模块的直接替换。
网络爬虫框架
功能齐全的爬虫
- grab – 网络爬虫框架(基于pycurl/multicur)
- scrapy – 网络爬虫框架(基于twisted),不支持Python3。
- pyspider – 一个强大的爬虫系统。
- cola – 一个分布式爬虫框架。
其他
- portia – 基于Scrapy的可视化爬虫。
- restkit – Python的HTTP资源工具包。它可以让你轻松地访问HTTP资源,并围绕它建立的对象。
- demiurge – 基于PyQuery的爬虫微框架。
HTML/XML解析器
通用
- lxml – C语言编写高效HTML/ XML处理库。支持XPath。
- cssselect – 解析DOM树和CSS选择器。
- pyquery – 解析DOM树和jQuery选择器。
- BeautifulSoup – 低效HTML/ XML处理库,纯Python实现。
- html5lib – 根据WHATWG规范生成HTML/ XML文档的DOM。该规范被用在现在所有的浏览器上。
- feedparser – 解析RSS/ATOM feeds。
- MarkupSafe – 为XML/HTML/XHTML提供了安全转义的字符串。
- xmltodict – 一个可以让你在处理XML时感觉像在处理JSON一样的Python模块。
- xhtml2pdf – 将HTML/CSS转换为PDF。
- untangle – 轻松实现将XML文件转换为Python对象。
清理
- Bleach – 清理HTML(需要html5lib)。
- sanitize – 为混乱的数据世界带来清明。
文本处理
- 用于解析和操作简单文本的库。
- 通用
- difflib – (Python标准库)帮助进行差异化比较。
- Levenshtein – 快速计算Levenshtein距离和字符串相似度。
- fuzzywuzzy – 模糊字符串匹配。
- esmre – 正则表达式加速器。
- ftfy – 自动整理Unicode文本,减少碎片化。
- 通用
自然语言处理
- 处理人类语言问题的库。
- NLTK -编写Python程序来处理人类语言数据的最好平台。
- Pattern – Python的网络挖掘模块。他有自然语言处理工具,机器学习以及其它。
- TextBlob – 为深入自然语言处理任务提供了一致的API。是基于NLTK以及Pattern的巨人之肩上发展的。
- jieba – 中文分词工具。
- SnowNLP – 中文文本处理库。
- loso – 另一个中文分词库。
- 浏览器自动化与仿真
- selenium – 自动化真正的浏览器(Chrome浏览器,火狐浏览器,Opera浏览器,IE浏览器)。
- Ghost.py – 对PyQt的webkit的封装(需要PyQT)。
- Spynner – 对PyQt的webkit的封装(需要PyQT)。
- Splinter – 通用API浏览器模拟器(selenium web驱动,Django客户端,Zope)。
- 多重处理
- threading – Python标准库的线程运行。对于I/O密集型任务很有效。对于CPU绑定的任务没用,因为python GIL。
- multiprocessing – 标准的Python库运行多进程。
- celery – 基于分布式消息传递的异步任务队列/作业队列。
- concurrent-futures – concurrent-futures 模块为调用异步执行提供了一个高层次的接口。
异步
- 异步网络编程库
- asyncio – (在Python 3.4 +版本以上的 Python标准库)异步I/O,时间循环,协同程序和任务。
- Twisted – 基于事件驱动的网络引擎框架。
- Tornado – 一个网络框架和异步网络库。
- pulsar – Python事件驱动的并发框架。
- diesel – Python的基于绿色事件的I/O框架。
- gevent – 一个使用greenlet 的基于协程的Python网络库。
- eventlet – 有WSGI支持的异步框架。
- Tomorrow – 异步代码的奇妙的修饰语法。
- 队列
- celery – 基于分布式消息传递的异步任务队列/作业队列。
- huey – 小型多线程任务队列。
- mrq – Mr. Queue – 使用redis & Gevent 的Python分布式工作任务队列。
- RQ – 基于Redis的轻量级任务队列管理器。
- simpleq – 一个简单的,可无限扩展,基于Amazon SQS的队列。
- python-gearman – Gearman的Python API。
云计算
- picloud – 云端执行Python代码。
- dominoup.com – 云端执行R,Python和matlab代码
网页内容提取
- HTML页面的文本和元数据
- newspaper – 用Python进行新闻提取、文章提取和内容策展。
- html2text – 将HTML转为Markdown格式文本。
- python-goose – HTML内容/文章提取器。
- lassie – 人性化的网页内容检索工具
WebSocket
- 用于WebSocket的库。
- Crossbar – 开源的应用消息传递路由器(Python实现的用于Autobahn的WebSocket和WAMP)。
- AutobahnPython – 提供了WebSocket协议和WAMP协议的Python实现并且开源。
- WebSocket-for-Python – Python 2和3以及PyPy的WebSocket客户端和服务器库。
- DNS解析
- dnsyo – 在全球超过1500个的DNS服务器上检查你的DNS。
- pycares – c-ares的接口。c-ares是进行DNS请求和异步名称决议的C语言库。
计算机视觉
- OpenCV – 开源计算机视觉库。
- SimpleCV – 用于照相机、图像处理、特征提取、格式转换的简介,可读性强的接口(基于OpenCV)。
- mahotas – 快速计算机图像处理算法(完全使用 C++ 实现),完全基于 numpy 的数组作为它的数据类型。
代理服务器
- shadowsocks – 一个快速隧道代理,可帮你穿透防火墙(支持TCP和UDP,TFO,多用户和平滑重启,目的IP黑名单)。
- tproxy – tproxy是一个简单的TCP路由代理(第7层),基于Gevent,用Python进行配置。
web开发的一些框架
1.Django
Django是一个开源的Web应用框架,由Python写成,支持许多数据库引擎,可以让Web开发变得迅速和可扩展,并会不断的版本更新以匹配Python最新版本,如果是新手程序员,可以从这个框架入手。
2.Flask
Flask是一个轻量级的Web应用框架, 使用Python编写。基于 WerkzeugWSGI工具箱和 Jinja2模板引擎。使用 BSD 授权。
Flask也被称为 “microframework” ,因为它使用简单的核心,用 extension 增加其他功能。Flask没有默认使用的数据库、窗体验证工具。然而,Flask保留了扩增的弹性,可以用Flask-extension加入这些功 能:ORM、窗体验证工具、文件上传、各种开放式身份验证技术。
3.Web2py
Web2py是一个用Python语言编写的免费的开源Web框架,旨在敏捷快速的开发Web应用,具有快速、可扩展、安全以及可移植的数据库驱动的应用,遵循LGPLv3开源协议。
Web2py提供一站式的解决方案,整个开发过程都可以在浏览器上进行,提供了Web版的在线开发,HTML模版编写,静态文件的上传,数据库的编写的功能。其它的还有日志功能,以及一个自动化的admin接口。
4.Tornado
Tornado即是一个Web server(对此本文不作详述),同时又是一个类web.py的micro-framework,作为框架Tornado的思想主要来源于Web.py,大家在Web.py的网站首页也可以看到Tornado的大佬Bret Taylor的这么一段话(他这里说的FriendFeed用的框架跟Tornado可以看作是一个东西):
“[web.py inspired the] Web framework we use at FriendFeed [and] the webapp framework that ships with App Engine…”
因为有这层关系,后面不再单独讨论Tornado。
5.CherryPy
CherryPy是一种用于Python的、简单而非常有用的Web框架,其主要作用是以尽可能少的操作将Web服务器与Python代码连接,其功能包括内置的分析功能、灵活的插件系统以及一次运行多个HTTP服务器的功能,可与运行在最新版本的Python、Jython、Android上。
Echarts 图表的类库
- Bar(柱状图/条形图)
- Bar3D(3D 柱状图)
- Boxplot(箱形图)
- EffectScatter(散点图)
- Funnel(漏斗图)
- Gauge(仪表盘)
- Geo(地理坐标系)
- Graph(关系图)
- HeatMap(热力图)
- Kline(K线图)
- Line(折线/面积图)
- Line3D(3D 折线图)
- Liquid(水球图)
- Map(地图)
- Parallel(平行坐标系)
- Pie(饼图)
- Polar(极坐标系)
- Radar(雷达图)
- Sankey(桑基图)
- Scatter(散点图)
- Scatter3D(3D 散点图)
- ThemeRiver(主题河流图)
- WordCloud(词云图)
原创地址:https://mp.weixin.qq.com/s/6SJYooBuBhzsibeXS1mvWQ
本文链接: https://erik.xyz/2020/06/19/python-project/
版权声明: 本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。转载请注明出处!